Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Susceptibility-weighted imaging (SWI) is an advanced MR imaging sequence that can be implemented at high resolution. This sequence can be performed on conventional MR imaging scanners and is very sensitive to mineralization. The purpose of this study was to establish the course of mineralization in the deep gray matter with age by using SWI. MATERIALS AND METHODS We retrospectively reviewed susceptibility-weighted images of 134 patients (age range, 1 to 88 years). Inclusion criteria comprised a normal conventional MR imaging (T1, T2, and fluid-attenuated inversion recovery sequences). We statistically analyzed the relative signal intensities of the globus pallidus, putamen, substantia nigra, caudate nucleus, red nucleus, and thalamus for correlation with age. The putamen was graded according to a modified scale, based on previous work that described a systematic pattern of mineralization with age. Bands of hypointensity in the globus pallidus, dubbed "waves," were also evaluated. RESULTS We documented decreasing intensity (ie, increasing mineralization) with age in all deep gray matter areas analyzed. We confirmed the age-related posterolateral to anteromedial progression of mineralization in the putamen. Characteristic medial and lateral bands of mineralization were exhibited in the globus pallidus in all children and young adults older than 3 years. Finally, an increase in the number of "waves" present in the globus pallidus was associated with increased age by category. CONCLUSION This study documents the course and pattern of mineralization in the deep gray matter with age, as determined by SWI. These findings may play a role in evaluating diseased brains in the future.
منابع مشابه
MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia.
BACKGROUND AND PURPOSE MR diffusion-weighted imaging provides early demonstration of neonatal brain infarction. The evolution and limitations of diffusion-weighted imaging findings in newborns, however, have not been evaluated. Using line-scan diffusion imaging (LSDI), we investigated perinatal ischemic brain injury. METHODS Nineteen term newborns (age, 9 hours to 8 days; mean age, 2.6 days) ...
متن کاملNeonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging.
BACKGROUND AND PURPOSE Although diffusion-weighted imaging has been shown to be highly sensitive in detecting acute cerebral infarction in adults, its use in detecting neonatal hypoxic-ischemic encephalopathy (HIE) has not been fully assessed. We examined the ability of this technique to detect cerebral changes of acute neonatal HIE in different brain locations. METHODS Fifteen MR examination...
متن کاملHuman brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application to determine iron content in deep gray matter structures
The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously esta...
متن کاملMR of the normal neonatal brain: assessment of deep structures.
BACKGROUND AND PURPOSE MR imaging is a powerful tool for studying the anatomy of and the developmental changes that occur in the brain. The purpose of this project was to determine which structures can be distinguished on standard spin-echo MR sequences of a normal neonatal brain and with what frequency they can be identified. METHODS The T1- and T2-weighted spin-echo MR images of 12 term neo...
متن کاملCognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.
BACKGROUND AND PURPOSE Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 29 1 شماره
صفحات -
تاریخ انتشار 2008